Organised Chaos Light Trails on black background

The ingredients of a future-resilient, holistic data strategy

The foundational pillars of a data strategy that will help marketers thrive

Originally published via Campaign

Data has never been more integral to more aspects of marketers’ businesses, but at the same time the space has never been more complex and dynamic. We all recognise the importance of a well-constructed, holistic marketing data strategy. But what goes into such a data strategy?

While each business must iterate the elements of its approach to fit its objectives, there are foundational pillars that I believe should always be present in some form. Ensuring coverage and intent behind these pillars provides a solid base on which to form more nuanced tactics for specific marketing objectives and organisational needs. These pillars are complementary, ranging from foundation to end-point application. Let’s dive into each in more detail:

Technology stack strategy

First and foremost, it is imperative that marketers take an organised approach to building their marketing technology stack. Technology selection, whether purchased or built, should be informed by three things: your objectives, desired use cases in service of those objectives and the talent you have or will have to operate the technology in-house or via partners. That said, there are guiding principles I believe to be consistent for all brands. They are:

  • Completeness: This refers to the completeness of the stack relative to marketing goals. Specifically, the question marketers should ask is whether the technology allows them to achieve said goals with greater campaign performance effectiveness and operational efficiency. Those goals will often vary by brand. For example, the needs of a medium-sized local marketer operating primarily from their website, with the goal of improving online revenue, would be very different from that of a multinational brand, with a multitude of paid and owned communication channels, looking to build a single customer view for analysis, insight generation and activation.
  • Modular, flexible, built-to-specifications: As an organisation evolves, so too does its marketing needs. Rather than a single one-size-fits-all architecture, which rarely fits anything for very long, I recommend a modular approach. Start with a foundation on top of which one can build and add elements that are not only additive, but synergistic with existing infrastructure. This should be done in a way that drives value from day one while simultaneously building towards longer-term objectives.
  • Synergistic: Each component should work seamlessly with others to form a whole that is greater than the sum of its parts. This synergy can exist either as a function of technology selection or stack design. For example, one can select multiple elements from a single marketing cloud, combine technology from different platforms or even build components in-house, if there are adequate engineering and development resources.
  • Ways of working: A well-planned architecture stack is for naught without multiple parties working with a shared vision of how the technology and data will be put to use. As such, it is imperative that organisational processes between key stakeholders for different stack components are aligned to facilitate shared goals, synergy and results.

Data collection and tagging health

With the foundations of the technology stack in place, the next step is to ensure data is being captured in a consistent and robust manner. The degree and sophistication of your data collection and plumbing setup will vary in accordance with the number of touch points and the volume of data flowing through.

Beyond technical setup and plumbing, this also encompasses operational and best practices to ensure data is collected in a usable format. This includes everything from data hygiene processes like tagging and audience naming convention, to efficient and consistent platform and campaign setup structures, so that collected data can be easily mapped back to the activity that is generating it.

For marketers collecting and centralising data in data lakes or data warehouses, the pipelines feeding the data in for centralisation, and out for deployment, must also be engineered and maintained in an effective, scalable fashion. Most importantly, marketers must ensure that the data collection and centralisation is consistent with current regional and local legislation. Capturing data shared and generated from customers for operational purposes is one thing, but consent for marketing applications is another. It is up to each marketer and their agencies to do their due diligence.

Audience management and engineering

After data is collected and centralised, it should be organised and segmented so that it can be used by marketing, creative and media teams.

This organisation and segmentation can be broken down into several steps. The first is managing the collected data, with the exact mechanics differing depending on the technology. This can be done through a cloud-based data warehouse, a customer data platform, site or app analytics software, or even media buying platforms, as most programmatic platforms today have audience creation or organisation functionalities. Regardless of the underpinning technology, marketers should maintain a centralised view with clear processes to ensure data veracity and freshness.

In addition to data collection, governance and hygiene are also paramount at this stage. Marketers should combine technology and automation with codified processes to ensure that data accuracy, quality and adherence align with established taxonomies and conventions.

Once the collected data has been catalogued and set up for work, the data can be used to create audience segments in accordance with marketing use cases. There are myriad methods to do this, code or no-code, heuristic or data-driven. However, the key is to have a framework through which deployable audiences are created. For example, a marketer with performance objectives may want to align their baseline segmentation taxonomy with different customer states of their sales journey, leveraging a combination of rules-based and model-based clustering to derive segments for each funnel stage.

Beyond first-party data, marketers can incorporate value-adding external data (second or third-party data) to supplement and fill gaps depending on the use case. The extent to which this is needed depends on the marketer. Larger brands with more customer data will likely require less, whereas smaller brands still building their customer data pool will likely need more.

That said, external data, whether for direct deployment, or to model or amplify existing customer data, can almost always add value when used judiciously. As such, just as brands should have a clear taxonomy for organising customer data, they should also have a framework for evaluating and organising external data sources such that deployment is at the ready and well-informed.

Data deployment

One of the unintended consequences of the programmatic media era is that it has trained an entire generation of marketers to equate data use with media targeting, but there are many other ways it can be deployed such as to address users across media channels. Marketers and their agencies should construct codified processes for leveraging data not just to reinforce media campaigns, but also to generate insights to inform upstream business and strategic planning.

These processes should include first-party data sources, as well as external data such as those from larger, more representative but less granular sources, such as syndicated panels and population-level data. This serves to calibrate and reduce the risk of bias that may come with the more granular but narrow event-level data.

Marketers and their agencies should have an organised approach that applies the previously established data taxonomy to their media planning process. For example, there should be processes for selecting data segments depending on the execution scenario across the customer journey.

Tag-based audiences can be applied to media platform line items in a straightforward manner, whereas data from a customer relationship management system or data warehouse will require a more involved pipelining process. The key is that there is a holistic framework that covers all viable sources.

Aside from media communications, brands should place equal emphasis on the ways data can be used to improve creative messaging. There are many angles from which to approach this, whether it be leveraging audience insights to inform creative strategy and territories or merging audience and contextual signals via creative technology for dynamic, personalised experiences across paid and owned touch points. The key point is that a well-planned data-driven media campaign loses much of its impact if the messaging does not match the targeting.

Future resilience

It is not an overstatement to say that this is the most pivotal period in the history of the industry in terms of a shift towards greater user privacy and better-informed consent. A future-resilient data strategy refers to operational and technological preparedness in response to current and impending changes to the ability for brands to collect data against, attribute, measure, analyse and target users and audiences.

While much remains uncertain, we can begin by mapping several trends with a fair degree of directional certainty. As such, it is paramount that brands and their agencies take these trends into account across each of the previous pillars to maximise future resilience.

These trends include: increased focus and need for more persistent forms of first-party data, greater reliance on probabilistic methods, technology with a privacy by design approach such as data clean rooms and federated learning, the growing integrations between advertising technology and managed cloud systems.

While it is impossible to predict the future, marketers who weave these considerations into their data strategy roadmaps while maintaining the agility to align with future developments will be well-positioned to thrive both today and tomorrow.

Vincent Niou

Essence

published on

26 January 2022

Category

Experience

Related Topics

Data privacy Industry insight

More in Experience

Man and woman carrying blue bar on graph

Data – the answer to cultural change?

How do you drive cultural change through data? Di Mayze, Global Head of Data and AI at WPP, talks us through the WPP way

Digital picture of system of pipes converging in a place from different directions

Data – decision critical, not just a record

Data will be considered a decision-maker, an influencer, and an input to our actions – not just a record of what has happened

Composite image of modern city network communication concept

Data: are we headed towards shared control?

Over the next decade we will enter a new era of shared control of personal data – in fact it is already on the cards

Close message

Privacy Policy

We have updated our Privacy Notice for this website. Please review our Privacy Policy.

Go to Privacy Policy